python import requests url = 'https://api.example.com/data' response = requests.get(url) if response.status_code == 200: data = response.json() print(data) else: python import pandas as pd df = pd.DataFrame(data) print(df) python import matplotlib.pyplot as plt x = [1, 2, 3, 4, 5] y = [10, 8, 6, 4, 2] plt.plot(x, y) plt.show() python from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier iris = datasets.load_iris() X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2) knn = KNeighborsClassifier() knn.fit(X_train, y_train) accuracy = knn.score(X_test, y_test) python from flask import Flask app = Flask(__name__) @app.route('/') def hello_world(): return 'Hello, World!' if __name__ == '__main__': app.run()


上一篇:
下一篇:
切换中文