python
import requests
url = 'https://api.example.com/data'
response = requests.get(url)
if response.status_code == 200:
data = response.json()
print(data)
else:
python
import pandas as pd
df = pd.DataFrame(data)
print(df)
python
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [10, 8, 6, 4, 2]
plt.plot(x, y)
plt.show()
python
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
iris = datasets.load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2)
knn = KNeighborsClassifier()
knn.fit(X_train, y_train)
accuracy = knn.score(X_test, y_test)
python
from flask import Flask
app = Flask(__name__)
@app.route('/')
def hello_world():
return 'Hello, World!'
if __name__ == '__main__':
app.run()