Serializing Python objects into JSON or other formats using Python, or deserializing JSON or other formatted data into Python objects
Environmental preparation:
1. Install Python 3 and pip package management tools.
2. Create and activate a virtual environment (optional).
Class library dependencies:
1. Python: A Python library for data validation and parsing.
Installing Pydantic:
Install Pydantic using the following command:
pip install pydantic
Data sample:
Suppose we have a 'Person' class that contains two attributes, namely 'name' and 'age'.
python
from pydantic import BaseModel
class Person(BaseModel):
name: str
age: int
Complete sample code:
python
from pydantic import BaseModel
import json
#Define a Person class that inherits from BaseModel
class Person(BaseModel):
name: str
age: int
#Instantiating a Person object
person = Person(name="John", age=30)
#Serializing Python objects into JSON
json_data = person.json()
Print (json_data) # Output: {"name": "John", "age": 30}
#Deserialize JSON data into Python objects
json_str = '{"name": "Alice", "age": 25}'
person_from_json = Person.parse_raw(json_str)
Print (person_from_json) # Output: Person (name='Alice ', age=25)
Summary:
Pydantic is a powerful library that can be used for data validation and parsing. It uses Python's type hints and annotations to define the data model and provides easy-to-use methods for serializing and deserializing Python objects. Using Pydantic can simplify the process of data validation and transformation, and improve development efficiency.