python
from sympy import symbols
from sympy.physics.mechanics import dynamicsymbols, inertia
from sympy.physics.mechanics import RigidBody, KanesMethod
m, g, L = symbols('m g L')
theta = dynamicsymbols('theta')
I = inertia(L**2, 0, 0)
pendulum = RigidBody('pendulum', center_mass=L/2, mass=m, inertia=I, frame=None)
pendulum_point = pendulum.masscenter.locatenew('pendulum_point', L/2 * (
sin(theta) * sin(theta)), L/2 * cos(theta))
pendulum_frame = pendulum_frame.orientnew('pendulum_frame', 'Axis', [theta, N.z])
pendulum.masscenter.set_vel(pendulum_frame, pendulum_point.dt(N))
N = pendulum_frame.inertial
kane = KanesMethod(N)
loads = [(pendulum.masscenter, -m * g * N.y)]
bodies = [pendulum]
kane.kanes_equations(bodies, loads)
rhs = kane.rhs()
for eq in rhs:
print(eq)
from scipy.integrate import odeint
theta0 = 0.1
omega0 = 0
y0 = [theta0, omega0]
t = symbols('t')
times = np.linspace(0, 10, 100)
def dynamics(y, t):
theta, omega = y
rhs_values = [rhs.subs({theta.diff(): omega, theta: theta})[0] for eq in rhs]
return [omega, rhs_values]
sol = odeint(dynamics, y0, times)