python from nupic.frameworks.opf.modelfactory import ModelFactory from nupic.encoders import MultiEncoder model_factory = ModelFactory(verbosity=0) encoder = MultiEncoder() encoder.addEncoder("position", position_encoder) encoder.addEncoder("velocity", velocity_encoder) model_params = {"inferenceType": "TemporalAnomaly", "sensorParams": { "timestampFieldName": "timestamp", "encoders": { "position": "position", "velocity": "velocity" } }, "spEnable": True} model = model_factory.create(model_params) dataset = load_dataset("walking_patterns.csv") model.enableInference({"predictedField": "position"}) for record in dataset: result = model.run(record) print("Anomaly score:", result.inferences["anomalyScore"]) future_data = generate_future_data() for record in future_data: result = model.run(record) print("Predicted position:", result.inferences["multiStepBestPredictions"])


上一篇:
下一篇:
切换中文