python import dpark import numpy as np from sklearn.linear_model import LogisticRegression dpark.config(port=8000, nCpus=4, mem="16g", retries=5) X = np.random.rand(1000, 10) y = np.random.randint(2, size=1000) with dpark.parallelize([X, y]).as_input: model = LogisticRegression() model.fit(X, y) with dpark.parallelize(X).as_input: predicted = model.predict(X)


上一篇:
下一篇:
切换中文