python
from milk import defaultlearner
from milk import classification_dataset
data = [
(['good', 'bad'], 'positive'),
(['bad', 'good'], 'negative'),
(['good', 'good'], 'positive'),
(['bad', 'bad'], 'negative')
]
features = ['feature1', 'feature2']
dataset = classification_dataset(features=features, data=data)
classifier = defaultlearner()
model = classifier.train(dataset)
test_data = ['good', 'bad']
prediction = model.apply(test_data)
print(prediction)