$ pip install nupic python import nupic from nupic.algorithms.anomaly import computeRawAnomalyScore from nupic.algorithms.anomaly import computeAnomalyScore from nupic.encoders import RandomDistributedScalarEncoder from nupic.encoders import ScalarEncoder from nupic.encoders.spatial import GridCellEncoder from nupic.encoders.spatial import ScalarGridEncoder from nupic.encoders.temporal import DateEncoder from nupic.encoders.temporal import MultiEncoder from nupic.research.TP10X2 import TP10X2 from nupic.research.TP10X2 import TP10X2_factory from nupic.research.TP11X2 import TP11X2 from nupic.research.TP11X2 import TP11X2_factory from nupic.research.TP import TP from nupic.research.TP import TP_factory from nupic.research.TPAM11 import TPAM11 from nupic.research.TPAM11 import TPAM11_factory from nupic.swarming import permutations_runner from nupic.frameworks.opf.clamodels.cluster_params import getScalarMetricWithTimeOfDayAnomalyParams python import pandas as pd data = pd.read_csv('your_data.csv') time_column = 'timestamp' value_column = 'value' python python encoder = ScalarEncoder(21, 0.0, 100, 21, clipInput=True) encoded_data = encoder.encode(data[value_column].tolist()) python model = TP11X2_factory.create(inputWidth=input_width, columnCount=1, numLayers=num_layers, numCellsPerLayer=num_cells_per_layer) python model.enableLearning() for i in range(len(encoded_data) - input_width - prediction_steps): model.setPredictedInput([0]) model.setInput(encoded_data[i:i+input_width]) model.run() python future_predictions = [] for i in range(prediction_steps): prediction = model.getPredictedInput().getSparseData([0])[0][1] future_predictions.append(prediction) model.setPredictedInput([prediction]) model.run()


上一篇:
下一篇:
切换中文