python
import numpy as np
import statsmodels.api as sm
np.random.seed(0)
n = 100
X = np.linspace(0, 10, n)
X = sm.add_constant(X)
beta = [1, 2]
epsilon = np.random.normal(size=n)
y = np.dot(X, beta) + epsilon
model = sm.OLS(y, X)
bayesian_model = model.fit(method='mcmc', cov_type='robust')
print(bayesian_model.summary())