在线文字转语音网站:无界智能 aiwjzn.com

Python使用Feature-engine的DropFeatures、RecursiveFeatureElimination、SelectByShuffling函数做特征选择

准备工作: 1. 确保已经安装Python环境。 2. 安装Feature-engine库,可以通过以下命令进行安装: pip install feature-engine 3. 导入所需的类和函数: python from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from feature_engine.selection import DropFeatures, RecursiveFeatureElimination, SelectByShuffling 依赖的类库: - Feature-engine: 提供了一些功能强大的特征工程方法,包括特征选择、变换、离散化等。 数据样例: 本例中,我们将使用sklearn中的波士顿房价数据集作为示例数据。这个数据集包括13个特征变量,用于预测房价。 python # 加载数据集 boston = load_boston() # 获取特征和目标变量 X = boston.data y = boston.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 完整代码实例: python from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from feature_engine.selection import DropFeatures, RecursiveFeatureElimination, SelectByShuffling # 加载数据集 boston = load_boston() # 获取特征和目标变量 X = boston.data y = boston.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 使用DropFeatures类删除特征 drop_feats = DropFeatures(features_to_drop=['CRIM', 'ZN', 'INDUS']) X_train_drop = drop_feats.fit_transform(X_train) # 使用RecursiveFeatureElimination类进行递归特征消除 rfe = RecursiveFeatureElimination(estimator=LinearRegression(), n_features_to_select=5) X_train_rfe = rfe.fit_transform(X_train, y_train) # 使用SelectByShuffling类进行特征选择 sel_shuffle = SelectByShuffling(estimator=LinearRegression(), scoring='r2', cv=10, random_state=42) X_train_shuffle = sel_shuffle.fit_transform(X_train, y_train) # 打印选取的特征 print("Selected Features using DropFeatures:", drop_feats.features_to_drop_) print("Selected Features using RecursiveFeatureElimination:", X_train.columns[rfe.support_]) print("Selected Features using SelectByShuffling:", sel_shuffle.features_to_drop_) # 模型训练和预测 lr = LinearRegression() lr.fit(X_train_drop, y_train) y_pred = lr.predict(drop_feats.transform(X_test)) print("R-Squared (DropFeatures):", lr.score(drop_feats.transform(X_test), y_test)) lr.fit(X_train_rfe, y_train) y_pred = lr.predict(rfe.transform(X_test)) print("R-Squared (RecursiveFeatureElimination):", lr.score(rfe.transform(X_test), y_test)) lr.fit(X_train_shuffle, y_train) y_pred = lr.predict(sel_shuffle.transform(X_test)) print("R-Squared (SelectByShuffling):", lr.score(sel_shuffle.transform(X_test), y_test)) 总结: 本文我们使用Feature-engine库中的DropFeatures、RecursiveFeatureElimination、SelectByShuffling函数实现了特征选择。DropFeatures函数用于删除特定的特征,RecursiveFeatureElimination函数通过递归特征消除方法选择最佳特征子集,SelectByShuffling函数通过洗牌法选择特征。通过实验,我们可以从给定的数据集中选择合适的特征子集,以提高模型的性能和准确性。